Distinguishing iron-reducing from sulfate-reducing conditions.

نویسندگان

  • Francis H Chapelle
  • Paul M Bradley
  • Mary Ann Thomas
  • Peter B McMahon
چکیده

Ground water systems dominated by iron- or sulfate-reducing conditions may be distinguished by observing concentrations of dissolved iron (Fe(2+)) and sulfide (sum of H(2)S, HS(-), and S(=) species and denoted here as "H(2)S"). This approach is based on the observation that concentrations of Fe(2+) and H(2)S in ground water systems tend to be inversely related according to a hyperbolic function. That is, when Fe(2+) concentrations are high, H(2)S concentrations tend to be low and vice versa. This relation partly reflects the rapid reaction kinetics of Fe(2+) with H(2)S to produce relatively insoluble ferrous sulfides (FeS). This relation also reflects competition for organic substrates between the iron- and the sulfate-reducing microorganisms that catalyze the production of Fe(2+) and H(2)S. These solubility and microbial constraints operate in tandem, resulting in the observed hyperbolic relation between Fe(2+) and H(2)S concentrations. Concentrations of redox indicators, including dissolved hydrogen (H(2)) measured in a shallow aquifer in Hanahan, South Carolina, suggest that if the Fe(2+)/H(2)S mass ratio (units of mg/L) exceeded 10, the screened interval being tapped was consistently iron reducing (H(2) approximately 0.2 to 0.8 nM). Conversely, if the Fe(2+)/H(2)S ratio was less than 0.30, consistent sulfate-reducing (H(2) approximately 1 to 5 nM) conditions were observed over time. Concomitantly high Fe(2+) and H(2)S concentrations were associated with H(2) concentrations that varied between 0.2 and 5.0 nM over time, suggesting mixing of water from adjacent iron- and sulfate-reducing zones or concomitant iron and sulfate reduction under nonelectron donor-limited conditions. These observations suggest that Fe(2+)/H(2)S mass ratios may provide useful information concerning the occurrence and distribution of iron and sulfate reduction in ground water systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sulfurous Analysis of Bioelectricity Generation from Sulfate-reducing Bacteria (SRB) in a Microbial Fuel Cell

The current importance of energy emphasizes the use of renewable resources (such as wastewater) for electricity generation by microbial fuel cell (MFC). In the present study, the native sulfate-reducing bacterial strain (R.gh 3) was employed simultaneously for sulfurous component removal and bioelectricity generation. In order to enhance the electrical conductivity and provision of a compatible...

متن کامل

Dehalogenation and biodegradation of brominated phenols and benzoic acids under iron-reducing, sulfidogenic, and methanogenic conditions.

The anaerobic biodegradation of monobrominated phenols and benzoic acids by microorganisms enriched from marine and estuarine sediments was determined in the presence of different electron acceptors [i.e., Fe(III), SO4(2-), or HCO3-]. Under all conditions tested, the bromophenol isomers were utilized without a lengthy lag period whereas the bromobenzoate isomers were utilized only after a lag p...

متن کامل

Microbial mercury transformation in anoxic freshwater sediments under iron-reducing and other electron-accepting conditions.

Potential rates of microbial methylation of inorganic mercury (added as HgCl2) and degradation of methyl mercury (MeHg) (added as CH3HgCl) were investigated in anoxic sediments from the Mobile Alabama River Basin (MARB) dominated by different terminal electron-accepting processes (TEAPs). Potential rates of methylation were comparable under methanogenic and sulfate-reducing conditions but suppr...

متن کامل

Microbial reduction of uranium under iron- and sulfate-reducing conditions: Effect of amended goethite on microbial community composition and dynamics.

There is a growing need for a better understanding of the biogeochemical dynamics involved in microbial U(VI) reduction due to an increasing interest in using biostimulation via electron donor addition as a means to remediate uranium contaminated sites. U(VI) reduction has been observed to be maximized during iron-reducing conditions and to decrease upon commencement of sulfate-reducing conditi...

متن کامل

Gene Expression Correlates with Process Rates Quantified for Sulfate- and Fe(III)-Reducing Bacteria in U(VI)-Contaminated Sediments

Though iron- and sulfate-reducing bacteria are well known for mediating uranium(VI) reduction in contaminated subsurface environments, quantifying the in situ activity of the microbial groups responsible remains a challenge. The objective of this study was to demonstrate the use of quantitative molecular tools that target mRNA transcripts of key genes related to Fe(III) and sulfate reduction pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ground water

دوره 47 2  شماره 

صفحات  -

تاریخ انتشار 2009